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Generalised linear models

GLMs are a generalisation of the linear models we’ve looked at over the past two
weeks. They allow us to investigate regression models where the outcome variable
is one of several important special forms. The simplest of these is when the
outcome variable has only two possible values, such as “success” and “failure”.
Some estimation software requires the variable to be coded 0/1, and we will use
that coding in the explanation below.

All GLMs have three basic components:

Probability distribution (sometimes called the “stochastic component”);
Linear predictor (the “systemmatic component”);
Link function
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GLM for binary outcomes: probability distribution

The GLM for binary outcome variables is often called logistic regression. The
probability distribution associated with it is the binomial distribution:

Pr(Y = k|n, p) =
(

n
k

)
pk(1− p)n−k ,

for k = 0, 1, 2, . . . , n and where
(n

k
)

= n!
k!(n−k)! . In the special case where n = 1,

this reduces to

Pr(Y = k|p) = pk(1− p)1−k ,

where k = 0, 1. The parameter p is what we are interested in estimating; it is the
probability that the outcome variable, Y = 1.
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Linear predictor

The linear predictor always has the same form in all GLMs. It consists of the
explanatory variables that we think are associated with the probability that Y = 1.
So, this looks very much like the linear regression model:

η(x) = βo + β1x1 + · · ·+ βjxj .

Note, though, there is no “error term.” The randomness is provided by the
probability distribution we’ve just specified. (If you like, you could think of GLMs as
having different “error terms” to the normal distribution we use in linear regression.
Of you could think of linear regression as being a GLM with the normal distribution
as its probability distribution. )

David Barron Logistic regression Hilary Term 2018 5 / 33

Link function
The general link function is defined as:

η(x) = f [µ(x)],

where µ(x) is the parameter of the probability distribution we are interested in.

You might think that in this case we could just put these two together in a
straightforward way:

p = η(x) = βo + β1x1 + · · ·+ βj + xj ,

but, while this is in fact technically possible, there would be significant problems
with this model. The two main problems are:

You could get predicted values of p that are either smaller than 0 or larger
than 1, but as p is a probability, this is logically impossible.
A linear model implies that the impact of a one-unit change in any x is the
same regardless of the value of p, but this can’t be true. It must be “harder”
to increase the probability from, say, 0.90 to 0.95 than it would be to increase
it from 0.50 to 0.55.

Therefore, a different link function is most commonly used.
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Logit link function

The logit link function is

η(x) = log
(

p
1− p

)
= β0 + βix1 + · · ·+ βjxj ,

which can be rearranged to give

p = 1
1 + e−η .

p/(1− p) is often called the odds (or odds ratio), and so another name for the logit
function is the log odds.

An alternative link function that is sometimes used is the normal cumulative
probability distribution, often called the probit function. This is virtually identical to
the logit function, and as interpretation of results using the logit function is
generally easier, it is much more common.
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Plot of the logit and probit functions

LogitProbit

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4

η(x)

p

David Barron Logistic regression Hilary Term 2018 8 / 33



Maximum likelihood estimation

Estimation of GLMs is straightforward, but it’s useful to have some intuition about
what is going on “under the hood.” Iterative (ie, trial and error) methods have to
be used. The computer tries values of the βs in the model, uses them to calculate
predicted values of p and then use that to calculate the likelihood of observing the
actual outcomes given those values of p. The iterations continue until the values of
p that result in the maximum likelihood is found. The corresponding values of the
βs are the maximum likelihood estimate of those parameters.

Fortunately, while there are general purpose ML estimation functions in R (and if
you want to make sure you really understand these principles, it is a good idea to
see if you can figure out how to use them to implement logistic regression), there
are special purpose functions that make it easy to implement any GLM.
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Logistic regression
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Logistic regression example
This example uses data from the Panel Study of Income Dynamics that relate to women’s labour force
participation. The respondents are all married women. The outcome is whether the woman is employed or not.
Explanatory variables: k5: number of children 5 or under; k618: number of children 6–18; age; wc: attended
college; lwg: log expected wage; inc: family income.

Call:
glm(formula = lfp ~ k5 + k618 + age + wc + lwg + inc, family = binomial,

data = Mroz)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.099 -1.094 0.601 0.972 2.177

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.21664 0.64090 5.02 5.2e-07
k5 -1.45610 0.19614 -7.42 1.1e-13
k618 -0.06427 0.06797 -0.95 0.34
age -0.06364 0.01270 -5.01 5.4e-07
wcyes 0.86225 0.20673 4.17 3.0e-05
lwg 0.60454 0.15062 4.01 6.0e-05
inc -0.03318 0.00783 -4.24 2.3e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 905.56 on 746 degrees of freedom
AIC: 919.6

Number of Fisher Scoring iterations: 4
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Interpretation
Parameter estimates are interpreted as effect on logit or log odds. For example, for
each additional $1000 of family income, the log odds of being in the labour force
declines by 0.033. This isn’t intuitive, but it is easy to see the direction of the effect
and to assess statistical significance. For example, you can see that the probability
of a woman being in employment goes down as the number of pre-school children
goes up, while having been to college increases the probability of employment. You
might prefer to calculate confidence intervals:

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 1.9787 4.4945
k5 -1.8522 -1.0821
k618 -0.1980 0.0689
age -0.0889 -0.0391
wcyes 0.4619 1.2736
lwg 0.3143 0.9065
inc -0.0490 -0.0182
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Effect plot
In this example, we can see that the effect of family income varies depending on
how many pre-school children are in the family.

Effect plot
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Interpretation, continued

The effect of each explanatory variable on the probability varies both across values
of that explanatory variable and across values of all the other explanatory variables.
This is why effect plots are particularly useful for logistic regression (and all other
GLMs). Even these involve some simplification. The example on the previous slide
fixed the values of the number of school-age children, age, college educated, and
log expected wage at their sample mean values. This is conventional, but you might
ask yourself whether it makes sense for dummy variables.
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Odds ratios
An alternative is to report parameter estimates as effects on the odds ratio, which
you can obtain simply by using the anti-log:

round(exp(cbind(Estimate = coef(l1), confint(l1))), 2)

Waiting for profiling to be done...

Estimate 2.5 % 97.5 %
(Intercept) 24.94 7.23 89.52
k5 0.23 0.16 0.34
k618 0.94 0.82 1.07
age 0.94 0.91 0.96
wcyes 2.37 1.59 3.57
lwg 1.83 1.37 2.48
inc 0.97 0.95 0.98

So, each additional $1000 of family income reduces the odds of working by 3 per
cent.
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Goodness of fit

We can compare goodness of fit of nested models using the deviance. The deviance
is defined as twice the difference between the model log likelihood and the log
likelihood of the saturated model (i.e., the best possible fit). The difference
between the deviances of nested models has a χ2 distribution with degrees of
freedom equal to the number of extra parameters estimated in the more complex
model. The anova function will calculate this for you:

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
746 906 NA NA NA
745 904 1 1.06 0.302
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Other goodness of fit statistics

A number of other GoF statistics have been suggested as analogues of the R2

statistic often used in linear regression. In these formulae, L0 is the likelihood of a
regression with only an intercept, Lm is the likihood of the model actually
estimated, and n is the sample size.

Cox and Snell Index
R2

CS = 1− (L0/Lm)2/n.

One drawback of this statistic is that the upper bound is not 1, but rather is
1− L2/n

0 .

Nagelkerke’s Index

R2
N = R2

CS

1− L2/n
0

.

As you can see, this is the Cox and Snell index divided by the upper bound of this
index, which therefore now has an upper bound of 1.

McFadden’s R2

R2
McF = 1− log(Lm)/ log(L0)
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Example

descr::LogRegR2(l1)

Chi2 124
Df 6
Sig. 0
Cox and Snell Index 0.152
Nagelkerke Index 0.204
McFadden's R2 0.121

tjur <- function(mod){

yhat <- predict(mod, type = 'response')
d <- by(yhat, mod$y, mean)
unname(abs(d[1] - d[2]))

}
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Outlier detection
Similar methods to those used in linear regression can be used to check for outliers.
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Ordinal logistic regression
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Ordinal outcomes

Sometimes we have outcome variables that take a small number of discrete, ordered
categories. (If there are many categories, you would probably be best advised to
treat it as a numeric variable.) For example, I have been doing research into the
quality of adult residential care facilities, and this has categories “Poor”, “Fair”,
“Good”, and “Excellent.” We want to use a method that uses the information about
ordering in the data. There are several possible alternatives, but I am going to
explain only the most straightforward. It is often just called ordinal logistic
regression, although strictly speaking it is just one version of ordinal logit.
Sometimes it is called the proportional odds model, which would be a less
ambiguous name for it.
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Proportional odds logistic regression

The simplest model for ordinal logistic regression. Our linear predictor is:

η(x) = β0 + β1x1 + · · ·+ βkxk .

Then we have

logit(pm) = η(x)
logit(pm + pm−1) = η(x) + α1

logit(pm + pm−1 + pm−2) = η(x) + α1 + α2

. . .

logit(p1) = 1− (η(x) + α1 + α2 + · · ·+ αm−2)

So, if we have an outcome variable with three categories, we first consider the log
odds of being in the highest category against being in either of the other two
categories, then the log odds of being in the middle category against being in the
lowest category. The linear predictor is constrained to be the same in each case,
with a threshold parameter (the αs) being estimated for each one.
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Example

Three level variable called apply, with levels “unlikely”, “somewhat likely”, and
“very likely”, coded 0, 1, and 2, respectively, that we will use as our outcome
variable. Three explanatory variables: pared, dummy variable indicating whether at
least one parent has a graduate degree; public, dummy variable indicating whether
undergrad college is public or private, and gpa, student’s grade point average.
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Scatterplot matrix
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Regression example

formula: apply ~ pared + public + gpa
data: dat

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 400 -358.51 727.02 5(0) 1.63e-10 1.3e+03

Coefficients:
Estimate Std. Error z value Pr(>|z|)

paredYes 1.0477 0.2658 3.94 8.1e-05
publicPublic -0.0587 0.2979 -0.20 0.844
gpa 0.6157 0.2606 2.36 0.018

Threshold coefficients:
Estimate Std. Error z value

0|1 2.203 0.780 2.83
1|2 4.299 0.804 5.34
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Effect plot
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Test assumption

The “proportional odds” assumption is quite a strong one, so it’s important to test
it. The easiest way to do this is with the nominal_test function in the ordinal
package.

Df logLik AIC LRT Pr(>Chi)
NA -359 727 NA NA

pared 1 -358 729 0.025 0.875
public 1 -357 725 3.883 0.049
gpa 1 -358 728 0.802 0.371

The likelihood ratio test can be thought of as a test of the hypothesis that relaxing
the proportional odds assumption does not improve model fit. In this case, we can
see evidence against the PO assumption for the public variable, so we can
re-estimate the model as follows.
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Partial proportional odds

o2 <- clm(apply ~ pared + gpa, nominal = ~ public, data = dat, Hess = TRUE)
summary(o2)

formula: apply ~ pared + gpa
nominal: ~public
data: dat

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 400 -356.57 725.14 5(0) 2.44e-09 1.3e+03

Coefficients:
Estimate Std. Error z value Pr(>|z|)

paredYes 1.058 0.267 3.97 7.2e-05
gpa 0.611 0.261 2.34 0.019

Threshold coefficients:
Estimate Std. Error z value

0|1.(Intercept) 2.166 0.780 2.78
1|2.(Intercept) 4.411 0.809 5.45
0|1.publicPublic 0.235 0.305 0.77
1|2.publicPublic -0.573 0.411 -1.40
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Effect plot
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Multinomial logistic regression
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Multinomial logistic regression

This method is used when an outcome variable consists of discrete but unordered
categories. Common examples involve individuals making choices among a set of
alternatives, such as the form of transport to commute to work, brand of
toothpaste purchased, political party voted for, etc. The basic intuition is that we
perform logistic regressions on each pair of alternatives as follows:

log
(

pa
pb

)
= β1ab(x1a − x1b) + β2ab(x2a − x2b) + · · ·+ βkab(xka − xkb)

For example, the impact of variable x1 (say, price) on choice of toothpaste brand
depends on how different the price of brand a is compared with brand b. We get
different parameter estimates for each pair of choices. Characteristics of individuals
can also be included.
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Example
The data are 200 high school students. Outcome variable is programme choice (general, academic or
vocational). Explanatory variables are socio-economic status and writing test score.

# weights: 15 (8 variable)
initial value 219.722458
iter 10 value 179.982880
final value 179.981726
converged

Call:
multinom(formula = prog2 ~ ses + write, data = ml)

Coefficients:
(Intercept) sesmiddle seshigh write

general 2.85 -0.533 -1.163 -0.0579
vocation 5.22 0.291 -0.983 -0.1136

Std. Errors:
(Intercept) sesmiddle seshigh write

general 1.17 0.444 0.514 0.0214
vocation 1.16 0.476 0.596 0.0222

Residual Deviance: 360
AIC: 376
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Effect plot
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